STRENGTHENING AGRO-ECOSYSTEMS RESILIENCE FOR CLIMATE CHANGE ADAPTATION TO IMPROVE FOOD AND NUTRITION SECURITY (TCP/NEP/3701)

Soil report on the nutrient balance, organic matter and soil carbon

Submitted to: FOOD AND AGRICULTURE ORGANIZATION (FAO) PULCHOWK, LALITPUR, NEPAL

Submitted by: DIRECTORATE OF RESEARCH AND EXTENSION (DOREX) AGRICULTURE AND FORESTRY UNIVERSITY (AFU) RAMPUR, CHITWAN, NEPAL

August 2020

CONTENTS

SN		Page
1.	Introduction	3
2.	Objectives	3
3.	Methodology	3
4.	Results	4
5.	Management strategy	14

INTRODUCTION

Soils are integrated components of ecosystem (croplands, pasturelands, woodlands etc.) as a precious assets of nature for all life on earth. Soil is a base to prosperous agriculture but deteriorated due to many reasons: land clearing, deforestation, over grazing, surface mining, industrial wastes, and careless management. Further, climate has a significant effect on crop growth, production and productivity, quality and economic returns. Soil is constantly changing and always responding to changes in the environmental factors, along with the influences of man and land use.

The biggest challenge for agriculture over the coming decades will be to meet the world's increasing demand for food in a sustainable manner. Therefore, good land management decision is needed for sustainable and resilient agriculture systems. In fact, agriculture has been considered as the backbone of the national economy, food security of the country and livelihood of farm families. It implies all activities which need to be undertaken for crop production, like land preparation, soil fertility, crop varieties, sowing, inter-culture practices, bio-rational pest management and harvesting of crops with least disruption to the environment. It is necessary to produce crops maintaining soil fertility with balanced fertilization, ensuring healthy agro-ecosystem with biological diversity and conservation of all organisms for getting good ecosystem services from generation to generation. For all these, the basic requirement is soil sampling analysis and application of the results for maintaining sound agro-ecosystem and bio-diversity. In this line, FAO had declared the year 2015 as the "International Soil Year" and 5th December as World Soil Day with an aim to raise awareness about the importance of healthy soil and their sustainable management for protection for this precious natural resource.

OBJECTIVES

- To study the farmers knowledge on the importance of balanced use of nutrients for crop production.
- To determine the status of soil and calculate index of nutrient availability of farmers' fields.
- To predict the probability of profitable response to fertilizer.
- To recommend fertilizer needs of crops to maintain soil fertility and sustain food productivity.
- To maintain judicious use of input, i.e. reducing unnecessary costs and help in soil fertility management.
- To share technology generated for nutrient use efficiency and promote environment quality.

METHODOLOGY

Soil fertility is an important ecosystem services for cultivation of any type of crop. Crop yield is largely dependent on the soil in which the crop grows. So, before cultivation, it is very important to check the soil for its nutrients. Therefore, semi-structured questionnaire was prepared, shared with FAO office for suggestion and improvement, and face to face interview was administered among randomly selected farmers in Dang, Gulmi and Marpha including farmers as follows.

Dang	Gulmi	Marpha
1. Ragauja (N=23)	1. Balkot (N=21)	1. Gharapjing (N=6)

2. Sunepani (N=20)	2. Lumcha (N=17)	2. Marpha (N=6)
3. Santinagar (N=25)	3. Pipaldhara (N=16)	3. Pangling (N=10)
Total: 68	Total: 54	Total: 22

Similarly, soil sampling is the vital step for analysis, which were collected following soil testing standards from farmers' fields as representatives of the selected areas. It was done when there was no crop in the field, before growing of the next crop and prior application of manures and fertilizers. For this, surface litter was scraped away without disturbing soil, V-shaped cut up to 15 cm depth, and soil slices collected in plastic bucket moving in a zig-zag manner from each sampling unit in the Dang districts. In Gulmi and Mustang, the soil samples were taken from the Citrus and Apple field before the manuring on the crops. The soil samples were taken from the three depths i.e 0-15 cm, 15-30 cm and 30-60 cm depths. Ten soil samples were collected from homogenous sampling units, mixed them thoroughly, which were divided into four units and two opposite units were selected each time so that the final composite sample of half kg (one sampling unit) was selected. Thus collected samples kept in cloth bags, well labeled, brought in Soil Testing Laboratory in Pokhara, Kaski. Soil analysis was done for major primary nutrients N, P, K, including soil pH and organic matter.

RESULTS

Farmers' survey

Farmer's perception on the soil fertility status of the soil

Farmers were interviewed from the three project districts i.e Dang (120), Gulmi (120) and Mustang (60) to know their perception on the soil fertility status of soil. In total 54.9% of the farmers perceived that the soil in the field was fertile followed by the somewhat fertile (32.8%), highly fertile (9.6%) and least (2.7%) perceived as not fertile. There results from the districts was contrasting showing that the majority of the farmers from the Dang districts perceived the soil are somewhat fertile whereas in the Gulmi and Mustang districts majority of farmers perceived as fertile shown in Table 2.

S.N	Soil fertility status	Dang	Gulmi	Mustang	Total	P value
1.	Fertile	38 (31.9%)	77 (67.5%)	46 (76.7%)	161 (54.9%)	< 0.001
2.	Highly fertile	0 (0.0%)	28 (24.6%)	0 (0.0%)	28 (9.6%)	
3.	Not fertile	6 (5.0%)	2 (1.8%)	0 (0.0%)	8 (2.7%)	
4.	Somewhat fertile	75 (63.0%)	7 (6.1%)	14 (23.3%)	96 (32.8%)	

Table 2. Farmers perception on the soil fertility status of the soil in the project districts

Agricultural Cropping practices

We found that the around 68% of the farmers followed the both cropping practices i.e. mono-cropping and mixed cropping. In the case of the Gulmi and Mustang districts very few number of the farmers follows the sole mono-cropping practices. This shows that the farming practices followed by the farmers in the research areas shows the potentiality to increase the crop diversification which helps to conserve the ecosystem services.

Table 3. Cropping	practices followed	d by the farmers	in the project districts

S.N	Cropping practices	Dang	Gulmi	Mustang	Total	P value
1.	Mono cropping	26 (21.8%)	0 (0.0%)	3 (5.0%)	29 (9.9%)	< 0.001
2.	Mixed cropping	13 (11.0%)	29 (25.4%)	21 (35.0%)	63 (21.5%)	
3.	Both	80 (67.2%)	84 (73.7%)	34 (56.7%)	198 (67.6%)	

Nutrients management:

The results shows that the overall the more than 90% of the farmers use the compost for the nutrients management in all three districts. The use of the chemical fertilizers also contribute more than 50% in the nutrients management practices. The use of the green manure and cover crops for the nutrients management was not found in practices by the farmers in the study areas but the farmers in the mustang used cover crops as a practices. We concluded that the agricultural practices could be changed incorporating the different nutrients management practices for the nutrients management in the study districts.

Table 4. Nutrient management practices adopted by the farmers in the project districts

S.N	Nutrients management	Dang	Gulmi	Mustang	Total	P value
1.	Compost					
	Yes	117 (98.3%)	99 (86.8%)	54 (90.0%)	270 (92.2%)	< 0.001
	No	2 (1.7%)	15 (13.2%)	6 (10.0%)	23 (7.8%)	
2.	Chemical fertilizers					
	Yes	79 (66.4%)	66 (57.9%)	30 (50.0%)	175 (59.7%)	< 0.001
	No	40 (33.6%)	48 (42.1%)	30 (50.0%)	118 (40.3%)	
3.	Green manure					
	Yes	2 (1.7%)	0 (0.0%)	3 (5.0%)	5 (1.7%)	0.053
	No	117 (98.3%)	114 (100.0%)	57 (95.0%)	288 (98.3%)	
4.	Cover crops					
	Yes	1 (0.8%)	0 (0.0%)	19 (31.7%)	20 (6.8%)	< 0.001
	No	118 (99.2%)	114 (100.0%)	41 (68.3%)	273 (93.2%)	
5.	Mulching					
	Yes	109 (91.6%)	114 (100.0%)	58 (96.7%)	281 (95.9%)	0.005
	No	10 (8.4%)	0 (0.0%)	2 (3.3%)	12 (4.1%)	
6.	Conservation tillage					
	Yes	0 (0.0%)	0 (0.0%)	44 (73.3%)	44 (15.0%)	< 0.001
	No	119 (100.0%)	114 (100.0%)	16 (26.7%)	249 (85.0%)	
7.	Others practices					
	Yes	10 (8.4%)	0 (0.0%)	1 (1.7%)	11 (3.8%)	0.002
	No	109 (91.6%)	114 (100.0%)	59 (98.3%)	282 (96.2%)	

Soil analysis

Crop production and its yield is a function of four major factors, i.e. yield = f (crop, soil, climate and management). Fertilizer recommendation therefore varies with crop cultivar, specific site of

cultivation, temperature variability and required necessary inputs of crop production). For this, soil testing and analysis are interpreted like low, to very high which is easily understood by the growers.

Soil pH

Hydrogen ions present in the soil decide pH value of the soil. It is a measure of the acidity or basicity in

soils, which affects the availability of plant nutrients. Soil pH status and values of soil sample analyses are presented in Tables 1a (Dang, $1b_{1-3}$ (Gulmi) and $1c_{1-3}$ (Marpha). which in general reflects that the samples were acidic in nature in Dang, moderately acidic to neutral in Gulmi and neutral to basic in Marpha. Table 2a (Dang, $2b_{1-3}$ (Gulmi) and $2c_{1-3}$ (Marpha) represents the statistical values (minimum, maximum, standard deviation and mean) of sampled sites.

· ·	Tuore fui bon pri status of Ruguaja, bunepan and buntingar sampted sites, bung, 2020							
F	SN	Soil pH	Ragauja (N=23)		Sunepani (N=20)		Santinagar (N=25)	
			Sample	Percent	Sample	Percent	Sample	Percent
			(No)		(No)		(No)	
F	1	Acidic	21	91.00	20	100.00	24	96
ſ	2	Neutral	2	9.00	0	0.00	1	4

Table 1a. Soil pH status of Ragauja, Sunepani and Santinagar sampled sites, Dang, 2020

Table 1b₁. Soil pH status of Balkot sampled sites, Gulmi, 2020 (N=21)

SN	Soil pH	0-15 cm		15-30 cm		30-60 cm	
	-	Sample	Percent	Sample	Percent	Sample	Percent
		(No)		(No)		(No)	
1	Mod. Acidic	2	9.52	3	14.29	2	9.52
2	Neutral	19	90.48	18	85.71	19	90.48

Table 1b₂. Soil pH status of Lumcha sampled sites, Gulmi, 2020 (N=17)

SN	Soil pH	0-15 cm		15-30 cm		30-60 cm	
		Sample (No)	Percent	Sample (No)	Percent	Sample (No)	Percent
1	Mod. Acidic	10	58.82	12	70.59	11	64.71
2	Acidic	1	5.88	0	0.00	1	5.88
3	Neutral	6	35.30	5	29.41	5	29.41

Table 1b₃. Soil pH status of Pipaldhara sampled sites, Gulmi, 2020 (N=16)

SN	Soil pH	0-15 cm		15-30 cm		30-60 cm	
		Sample (No)	Percent	Sample (No)	Percent	Sample (No)	Percent
1	Mod. Acidic	5	31.25	4	25.00	6	37.50
2	Neutral	11	68.75	12	75.00	9	56.25
3	Basic	0	0.00	0	0.00	1	6.25

Table 1c₁. Soil pH status of Gharapjing sampled sites, Marpha, 2020 (N=6)

racie reli boli pri	status of Ondrupjing sump		0)
SN Soil pH	0-15 cm	15-30 cm	30-60 cm

		Sample (No)	Percent	Sample (No)	Percent	Sample (No)	Percent
1	Basic	6	100.00	6	100.00	6	100.00

Table 1c₂. Soil pH status of Marpha sampled sites, Marpha, 2020 (N=6)

SN	Soil pH	0-15	cm	15-30) cm	30-60) cm
		Sample	Percent	Sample	Percent	Sample	Percent
		(No)		(No)		(No)	
1	Basic	6	100.00	6	100.00	6	100.00

Table 1c₃. Soil pH status of Pangling sampled sites, Marpha, 2020 (N=10)

SN	Soil pH	0-15	cm	15-30) cm	30-60) cm
		Sample	Percent	Sample	Percent	Sample	Percent
		(No)		(No)		(No)	
1	Neutral	1	10.00	0	0.00	0	0.00
2	Basic	9	90.00	10	100.00	10	100.00

Table 2a. Soil pH values of Ragauja, Sunepani and Santinagar sampled sites, Dang, 2020

SN	Statistical value	Ragauja (N=23)	Sunepani (N=20)	Santinagar (N=25)
1	Minimum	5.10	4.70	4.80
2	Maximum	6.50	6.30	6.50
3	Standard	0.40	0.46	0.34
	deviation			
4	Average	5.94	5.83	5.47

Table 2b₁. Soil pH status of Balkot sampled sites, Gulmi, 2020 (N=21)

	uote 201. Son pri statas of Dankot sampled sites, Canin, 2020 (1, 21)				
SN	Statistical value	0-15 cm	15-30 cm	30-60 cm	
1	Minimum	6.40	6.40	6.40	
2	Maximum	7.40	7.40	7.40	
3	Standard				
	deviation	0.29	0.32	0.32	
4	Average	6.98	7.01	6.97	

Table 2b₂. Soil pH status of Lumcha sampled sites, Gulmi, 2020 (N=17)

SN	Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	5.10	5.60	5.20
2	Maximum	7.40	7.50	7.50
3	Standard			
	deviation	0.59	0.52	0.60
4	Average	6.41	6.41	6.26

Table 2b₃. Soil pH status of Pipaldhara sampled sites, Gulmi, 2020 (N=16)

SN	Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	6.30	6.40	6.20
2	Maximum	7.40	7.30	7.60
3	Standard			
	deviation	0.38	0.29	0.38

4 Average 6.79 6.81 6.78

	1	i enarapjing sampiea sie		
SN	Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	8.20	8.30	8.20
2	Maximum	8.50	8.40	8.50
3	Standard			
	deviation	0.10	0.05	0.1
4	Average	8.33	8.33	8.37

Table 2c₁. Soil pH status of Gharapjing sampled sites, Marpha, 2020 (N=6)

Table 2c₂. Soil pH status of Marpha sampled sites, Marpha, 2020 (N=6)

	I			
SN	Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	8.20	7.90	7.90
2	Maximum	8.50	8.50	8.50
3	Standard			
	deviation	0.13	0.22	0.22
4	Average	8.32	8.32	8.32

Table 2c₃. Soil pH status of Pangling sampled sites, Marpha, 2020 (N=10)

SN	Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	7.50	8.00	7.60
2	Maximum	8.60	8.90	8.80
3	Standard			
	deviation	0.37	0.26	0.36
4	Average	8.27	8.5	8.44

Soil OM and C

OM is a measure of use of FYM and OC as measure of organic matter available in the soil, and the C:N ratio (carbon present in the soil to the ration of nitrogen present in the soil) lying in favorable range >2% and <30% for bacteria growing properly within this limit. The analyses of soil samples of the sampled sites in three districts are presented in Table 3a (Dang), $3b_{1-3}$ (Gulmi) and $3c_{1-3}$ (Marpha). Findings showed that over 80% samples with medium level of OM in Dang, which was slightly better in majority of the surveyed farmers of Sunapani VDC than other two VDCs. It was very low to low in Gulmi, and low to very high in Marpha, respectively. Respective statistical values of three survey districts are given in Table 4a (Dang), $4b_{1-3}$ (Gulmi) and $4c_{1-3}$ (Marpha).

Table 3a. Soil OM status of Ra	gauja, Sunepani and Santina	agar sampled sites, Dang, 2020

SN	OM	Ragauja (N=23)		Sunepani	(N=20)	Santinagar (N=25)		
		Sample	Percent	Sample	Percent	Sample	Percent	
		(No)		(No)		(No)		
1	Low	2	8.70	0	0.00	4	16.00	
2	Medium	21	91.30	19	95.00	20	80.00	
3	High	0	0.00	1	5.00	1	4.00	

SN	OM	0-15 cm		15-30) cm	30-60 cm	
		Sample (No)	Percent	Sample (No)	Percent	Sample (No)	Percent

1	Very Low	5	23.81	6	28.57	3	14.29
2	Low	16	76.19	15	71.43	18	85.71

Table 3b₂. Soil OM status of Lumcha sampled sites, Gulmi, 2020 (N=17)

SN	OM	0-15 cm		15-30) cm	30-60 cm		
		Sample (No)	Percent	Sample (No)	Percent	Sample (No)	Percent	
1	Very Low	10	58.82	9	52.94	10	58.82	
2	Low	7	41.18	8	47.06	7	41.18	

Table 3b₃. Soil OM status of Pipaldhara sampled sites, Gulmi, 2020 (N=16)

SN	OM	0-15 cm		15-30) cm	30-60 cm		
		Sample	Percent	Sample	Percent	Sample	Percent	
		(No)		(No)		(No)		
1	Very Low	2	12.50	4	25.00	4	25.00	
2	Low	14	87.50	12	75.00	12	75.00	

Table 3c₁. Soil OM status of Gharapjomg sampled sites, Marpha, 2020 (N=6)

SN	OM	0-15 cm		15-30	15-30 cm		30-60 cm	
		Sample	Percent	Sample	Percent	Sample	Percent	
		(No)		(No)		(No)		
1	High	2	33.33	2	33.33	1	16.67	
2	Very	4	66.67	4	66.67	5	83.33	
	High							

Table 3c₂. Soil OM status of Marpha sampled sites, Marpha, 2020 (N=6)

SN	OM	0-15 cm		15-3	0 cm	30-60 cm	
		Sample Percent		Sample	Percent	Sample	Percent
		(No)		(No)		(No)	
1	Medium	0	0.00	3	50.00	3	50.00
2	High	5	83.33	3	50.00	3	50.00
3	Very High	1	16.67	0	0.00	0	0.00

Table 3c₃. Soil OM status of Pangling sampled sites, Marpha, 2020 (N=10)

SN	OM	0-15 cm		15-30) cm	30-60 cm		
		Sample	Percent	Sample	Percent	Sample	Percent	
		(No)		(No)		(No)		
1	Low	3	30.00	0	0.00	0	0.00	
2	Medium	1	10.00	2	20.00	2	20.00	
3	High	4	40.00	4	40.00	6	60.00	
4	Very High	2	20.00	4	40.00	2	20.00	

Table 4a. Soil OM and C values of Ragauja, Sunepani and Santinagar sampled sites, Dang, 2020

SN	Statistical value	Ragauja (N=23)		Sunepan	i (N=20)	Santinagar (N=25)		
		OM	Carbon	OM	Carbon	OM	Carbon	
1	Minimum	2.33	1.35	2.54	1.47	1.42	0.82	
2	Maximum	4.79	2.78	5.24	3.04	6.17	3.58	

3	Standard	0.70	0.41	0.63	0.37	1.15	0.67
	deviation						
4	Average	3.48	2.02	3.71	2.15	3.51	2.03

Table 4b₁. Soil OM and C values of Balkot sampled sites, Gulmi, 2020 (N=21)

SN	Statistical value	0-15 cm		15-3	0 cm	30-60 cm		
		OM	Carbon	OM	Carbon	OM	Carbon	
1	Minimum	0.83	0.48	0.70	0.40	0.70	0.40	
2	Maximum	2.15	1.25	1.89	1.10	2.09	1.21	
3	Standard							
	deviation	0.35	0.20	0.36	0.21	0.35	0.20	
4	Average	1.25	0.73	1.25	0.73	1.33	0.77	

Table 4b₂. Soil OM and C values of Lumcha sampled sites, Gulmi, 2020 (N=17)

SN	Statistical value	0-1:	5 cm	15-3	0 cm	30-60 cm	
		OM	Carbon	OM	Carbon	OM	Carbon
1	Minimum	0.56	0.33	0.50	0.29	0.70	0.40
2	Maximum	1.56	0.90	1.49	0.86	1.89	1.10
3	Standard						
	deviation	0.26	0.15	0.32	0.19	0.37	0.21
4	Average	0.98	0.57	0.98	0.57	1.09	0.63

Table 4b₃. Soil OM and C values of Pipaldhara sampled sites, Gulmi, 2020 (N=16)

SN	Statistical value	0-1	0-15 cm		0 cm	30-60 cm	
		OM	Carbon	OM	Carbon	OM	Carbon
1	Minimum	0.83	0.48	0.43	0.25	0.50	0.29
2	Maximum	1.76	1.02	2.49	1.44	1.69	0.98
3	Standard						
	deviation	0.23	0.13	0.45	0.26	0.32	0.18
4	Average	1.21	0.70	1.20	0.69	1.17	0.68

Table 4c1. Soil OM and C values of Gharapjong sampled sites, Marpha, 2020 (N=6)

SN	Statistical value	0-1	0-15 cm		0 cm	30-60 cm	
		OM	Carbon	OM	Carbon	OM	Carbon
1	Minimum	9.26	5.37	9.12	5.29	1.59	0.92
2	Maximum	14.47	8.39	14.90	8.64	11.29	6.55
3	Standard						
	deviation	1.79	1.04	2.15	1.25	3.64	2.11
4	Average	11.08	6.43	11.34	6.57	8.97	5.20

Table 4c₂. Soil OM and C values of Marpha sampled sites, Marpha, 2020 (N=6)

SN	Statistical value	0-1:	0-15 cm		0 cm	30-60 cm	
		OM	Carbon	OM	Carbon	OM	Carbon
1	Minimum	5.64	3.27	3.04	1.76	3.18	1.84
2	Maximum	11.43	6.63	9.26	5.37	7.96	4.62
3	Standard						
	deviation	2.10	1.22	2.30	1.34	2.01	1.16

4 Average 7.45 4.32 5.75 3.33 5.50 3.1
--

SN	Statistical value	0-1:	0-15 cm		0 cm	30-60 cm			
		OM	Carbon	OM	Carbon	OM	Carbon		
1	Minimum	2.46	1.43	2.75	1.60	2.89	1.68		
2	Maximum	15.92	9.23	24.60	14.27	14.61	8.47		
3	Standard								
	deviation	4.49	2.61	7.18	4.16	3.83	2.22		
4	Average	6.90	4.00	10.81	6.27	7.44	4.31		

Table 4c₃. Soil OM and C values of Pangling sampled sites, Marpha, 2020 (N=10)

To predict nutrient need of crops soil test is performed and calibrated against the response of crops, and thus interpretation and evaluation of the soil test values primarily form the basis for fertilizer recommendations especially major nutrients; like N, P, K.

Soil N

Nitrogen is an essential constituent of amino acids, nucleic acids, nucleotides and chlorophyll; and it promotes rapid plant growth. Both NH4+ and NO3- forms can be taken up and metabolized by plants. Soil sample analyses showing soil N status and N values of Dang, Gulmi and Marpha are presented in Table 5-6a (Dang), 5-6b₁₋₃ (Gulmi) and 5-6c₁₋₃ (Marpha). The findings of soil sample analysis indicates that the values range low-high in Dang, low-medium in Gulmi and low- high in Matpha sample sites.

SN	N	Ragauja	Ragauja (N=23)		i (N=20)	Santinagar (N=25)	
		Sample	Percent	Sample	Percent	Sample	Percent
		(No)		(No)		(No)	
1	Low	-	-	-	-	2	8.00
2	Medium	18	78.26	13	65.00	12	48.00
3	High	5	21.74	7	35.00	11	44.00

Table 5a. Soil N status of Ragauja, Sunepani and Santinagar sampled sites, Dang, 2020

Table 5b₁. Soil N status of Balkot sampled sites, Gulmi, 2020 (N=21)

SN	Ν	0-15 cm		15-30) cm	30-60 cm		
		Sample	Percent	Sample	Percent	Sample	Percent	
		(No)		(No)		(No)		
1	Low	20	95.24	21	100.00	21	100.00	
2	Medium	1	4.76	0	0.00	0	0.00	

Table 5b₂. Soil N status of Lumcha sampled sites, Gulmi, 2020 (N=17)

					· /		
SN	Ν	0-15	cm	15-30 cm		30-60 cm	
		Sample	Percent	Sample	Percent	Sample	Percent
		(No)		(No)		(No)	
1	Low	17	100.00	17	100.00	17	100.00

Table 5b₃. Soil N status of Pipaldhara sampled sites, Gulmi, 2020 (N=16)

-	tuble 505. Don 11 status of 1 ipatentiala statistics, Outlin, 2020 (11–10)									
	SN	Ν	0-15 cm	15-30 cm	30-60 cm					

		Sample (No)	Percent	Sample (No)	Percent	Sample (No)	Percent
1	Low	16	100.00	15	93.75	16	100.00
2	Medium	-	00.00	1	6.25	-	00.00

Table 5c₁. Soil N status of Gharapjong sampled sites, Marpha, 2020 (N=6)

SN	N	0-15 cm		15-30	15-30 cm		30-60 cm	
		Sample	Percent	Sample	Percent	Sample	Percent	
		(No)		(No)		(No)		
1	Low	0	0.00	0	0.00	1	6.25	
2	High	6	100.00	6	100.00	5	93.75	

Table 5c₂. Soil N status of Marpha sampled sites, Marpha, 2020 (N=6)

SN	N	0-15	cm	15-30 cm		30-60 cm	
		Sample (No)	Percent	Sample (No)	Percent	Sample (No)	Percent
1	Medium	0	0.00	2	33.33	2	33.33
2	High	6	100.00	4	66.67	4	66.67

Table 5c₃. Soil N status of Pangling sampled sites, Marpha, 2020 (N=10)

SN	Ν	0-15 cm		15-30 cm		30-60 cm	
		Sample	Percent	Sample	Percent	Sample	Percent
		(No)		(No)		(No)	
1	Medium	4	40.00	2	20.00	2	20.00
2	High	6	60.00	8	80.00	8	80.00

Table 6a. Soil N values of Ragauja, Sunepani and Santinagar sampled sites, Dang, 2020

	uore our son it vurdes of rugudju, sunepun und suntinugur sumpred sites, Dung, 2020							
SN	Statistical value	Ragauja (N=23)	Sunepani (N=20)	Santinagar (N=25) 0.07				
1	Minimum	0.12	0.13					
2	Maximum	0.24	0.26	0.31				
3	Standard	0.03	0.03	0.06				
	deviation							
4	Average	0.17	0.18	0.18				

Table 6b1. Soil N values of Balkot sampled sites, Gulmi, 2020 (N=21)

SN	Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	0.04	0.03	0.03
2	Maximum	0.11	0.09	0.10
3	Standard			
	deviation	0.02	0.02	0.02
4	Average	0.06	0.06	0.07

Table 6b₂. Soil N values of Lumcha sampled sites, Gulmi, 2020 (N=17)

SN	Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	0.03	0.02	0.03
2	Maximum	0.08	0.07	0.09
3	Standard			
	deviation	0.01	0.02	0.02

4 Average 0.05 0.05 0.05

Table 6b₃. Soil N values of Pipaldhara sampled sites, Gulmi, 2020 (N=16)

SN	Statistical value	0-15 cm	15-30 cm	30-60 cm	
1	Minimum	0.04	0.02	0.02	
2	Maximum	0.09	0.12	0.08	
3	Standard				
	deviation	0.01	0.02	0.02	
4	Average	0.06	0.06	0.06	

Table 6c₁. Soil N values of Gharapjong sampled sites, Marpha, 2020 (N=6)

SN	Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	0.46	0.46	0.08
2	Maximum	0.62	0.75	0.56
3	Standard			
	deviation	0.061	0.11	0.18
4	Average	0.54	0.57	0.45

Table 6c₂. Soil N values of Marpha sampled sites, Marpha, 2020 (N=6)

SN	Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	0.28	0.15	0.16
2	Maximum	0.57	0.46	0.40
3	Standard			
	deviation	0.11	0.12	0.10
4	Average	0.37	0.29	0.27

Table 6c₃. Soil N values of Pangling sampled sites, Marpha, 2020 (N=10)

SN	Statistical value	0-15 cm	15-30 cm	30-60 cm	
1	Minimum	0.12	0.14	0.14	
2	Maximum	0.80	1.23	0.79	
3	Standard				
	deviation	0.23	0.36	0.20	
4	Average	0.35	0.54	0.38	

Soil P

Like N, P plays important functions in energy storage and transfer and the maintenance of membrane integrity. Soil P status and P values shows that 88% of the farmers' of Santinagar, 73.9% in Ragauja and 45% in Sunepani VDCs are having low status of P in their fields (Table 7a), among them, the lowest mean P value (20.58 P) was recorded in Santinagar, while the highest P value was obtained in soil samples from Ragauja VDC (Table 8a). Similarly, soil P values ranged very low-very high in Gulmi (Table 7-8b₁₋₃) and low- high in Marpha, low-medium in Pangling and medium- very high in Gharpjong and sampled sites (Table 7-8c₁₋₃). The uptake of phosphorus by the plant occurs in the form of HPO42- and H2PO4- ions from the soil solution. The major functions are. (Gulmi) and 5-6c₁₋₃ (Marpha)

Table 7a. Soil P status of Ragauja, Sunepani and Santinagar sampled sites, Dang, 2020

		\mathcal{O} \mathcal{I}	<u> </u>	
SN	Р	Ragauja (N=23)	Sunepani (N=20)	Santinagar (N=25)

		Sample	Percent	Sample	Percent	Sample	Percent
		(No)		(No)		(No)	
1	Low	17	73.91	9	45.00	22	88.00
2	Medium	1	4.35	3	15.00	1	4.00
3	High	5	21.74	8	40.00	2	8.00

Table 7b₁. Soil P status of Balkot sampled sites, Gulmi, 2020 (N=21)

SN	Р	0-15 cm		15-30	15-30 cm		30-60 cm	
		Sample	Percent	Sample	Percent	Sample	Percent	
		(No)		(No)		(No)		
1	Very Low	2	9.52	1	4.76	3	14.39	
2	Low	11	52.38	9	42.86	10	47.62	
3	Medium	5	23.81	8	38.10	6	28.57	
4	High	1	4.76	2	9.52	1	4.76	
5	Very High	2	9.52	1	4.76	1	4.76	

Table 7b₂. Soil P status of Lumcha sampled sites, Gulmi, 2020 (N=17)

SN	Р	0-15 cm		15-30) cm	30-60 cm	
		Sample	Percent	Sample	Percent	Sample	Percent
		(No)		(No)		(No)	
1	Very Low	2	11.76	2	11.76	5	29.41
2	Low	7	41.18	5	29.41	4	23.53
3	Medium	4	23.53	4	23.53	6	35.30
4	High	3	17.65	5	29.41	2	11.76
5	Very High	1	5.88	1	5.88	0	

Table 7b₃. Soil P status of Pipaldhara sampled sites, Gulmi, 2020 (N=16)

SN	Р	0-15 cm		15-30	15-30 cm		30-60 cm	
		Sample	Percent	Sample	Percent	Sample	Percent	
		(No)		(No)		(No)		
1	Very Low	3	18.75	2	12.50	2	12.50	
2	Low	7	43.75	7	43.75	4	25.00	
3	Medium	2	12.50	2	12.50	6	37.50	
4	High	3	18.75	5	31.25	4	25.00	
5	Very High	1	6.25	0	0.00	0	0.00	

Table 7c1. Soil P status of Gharpjong sampled sites, Marpha, 2020 (N=6)

SN	Р	0-15 cm		15-30	15-30 cm		30-60 cm	
		Sample	Percent	Sample	Percent	Sample	Percent	
		(No)		(No)		(No)		
1	Medium	2	33,33	4	66.67	3	50.00	
2	High	3	50.00	0	0.00	1	16.67	
3	Very High	1	16.67	2	33.33	2	33.33	

Table 7c₂. Soil P status of Marpha sampled sites, Marpha, 2020 (N=6)

				,	, ()	
SN	Р	0-1	15 cm		15-30 cm	30-60 cm

		Sample	Percent	Sample	Percent	Sample	Percent
		(No)		(No)		(No)	
1	Low	2	33,33	2	33.33	3	50.00
2	Medium	3	50.00	4	66.67	2	50.00
3	High	1	16.67	0	0.00	1	16.67

Table 7c₃. Soil P status of Pangling sampled sites, Marpha, 2020 (N=10)

SN	Р	0-15 cm		15-30 cm		30-60 cm	
		Sample (No)	Percent	Sample (No)	Percent	Sample (No)	Percent
1	Low	4	40.00	3	30.00	3	30.00
2	Medium	6	60.00	7	70.00	7	70.00

Table 8a. Soil P values of Ragauja, Sunepani and Santinagar sampled sites, Dang, 2020

SN	Statistical value	Ragauja (N=23)	Sunepani (N=20)	Santinagar (N=25)
1	Minimum	1.00	4.56	3.00
2	Maximum	582.16	119.58	138.04
3	Standard	152.70	39.49	31.88
	deviation			
4	Average	72.99	51.48	20.58

Table 8b1. Soil P values of Balkot sampled sites, Gulmi, 2020 (N=21)

SN	Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	3.38	6.98	1.83
2	Maximum	241.44	122.41	225.99
3	Standard			
	deviation	55.14	29.62	47.51
4	Average	41.51	36.43	35.40

Table 8b₂. Soil P values of Lumcha sampled sites, Gulmi, 2020 (N=17)

SN	Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	5.95	7.50	1.83
2	Maximum	114.68	159.51	96.65
3	Standard			
	deviation	34.89	39.44	29.42
4	Average	41.60	49.33	32.72

Table 8b₃. Soil P values of Pipaldhara sampled sites, Gulmi, 2020 (N=16)

SN	Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	4.41	1.83	5.44
2	Maximum	124.99	107.98	86.86
3	Standard			
	deviation	33.84	33.91	24.57
4	Average	38.13	40.99	39.87

Table 8c1. Soil P values of Gharpjong sampled sites, Marpha, 2020 (N=6)

SN	Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	33.10	33.1	33.10

2	Maximum	136.20	137.2	171.90
3	Standard			
	deviation	40.33	53.5	55.94
4	Average	70.14	67.6	85.15

Table 8c₂. Soil P values of Marpha sampled sites, Marpha, 2020 (N=6)

SN	Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	15.80	15.80	15.80
2	Maximum	102.50	50.50	67.80
3	Standard			
	deviation	32.29	13.05	21.93
4	Average	38.90	30.23	33.13

Table 8c3. Soil P values of Pangling sampled sites, Marpha, 2020 (N=10)

SN	Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	15.80	15.80	15.80
2	Maximum	50.50	33.10	33.10
3	Standard			
	deviation	11.70	8.36	8.36
4	Average	27.92	27.91	27.91

Soil K

Soil samples analyses for K status and K value revealed quite different than N and P, i.e. over 80% of the soil samples from Raguaja and Sunepani, and over 955% soil samples from Santinagar VDCs of Dang showing high K status (Table 9-10a), K mean value was also the highest from soil samples of Santinagar. K status ranged low to very high in all three sample sites of Gulmi (Table 9-10b₁₋₃) and Marpha (Table 9-10c₁₋₃). Potassium in the form of the K+ ion can be taken up readily by plant roots from the soil solution. Potassium controls water loss from plants as the K+ ion plays a crucial role in opening and closing of stomata.

SN	K	Ragauja (N=23)		Sunepani	Sunepani (N=20)		Santinagar (N=25)	
		Sample	Percent	Sample	Percent	Sample	Percent	
		(No)		(No)		(No)		
1	Low	-	-	1	5.00	-	-	
2	Medium	4	17.39	3	15.00	1	4.00	
3	High	19	82.61	16	80.00	24	96.00	

Table 9a. Soil K status of Ragauja, Sunepani and Santinagar sampled sites, Dang, 2020

Table 9b ₁ . Soil K status of Balkot san	npled sites, Gulmi, 2020 (N=21)
---	---------------------------------

SN	Κ	0-15 cm		15-30 cm		30-60 cm	
		Sample Percent		Sample	Percent	Sample	Percent
		(No)		(No)		(No)	
1	Very Low	1	4.76	1	4.76	2	9.52
2	Low	7	33.33	10	47.62	10	47.62
3	Medium	7	33.33	9	42.86	8	38.10
4	High	5	23.81	0	0.00	0	0.00
5	Very High	1	4.76	1	4.76	1	4.76

SN	Κ	0-15 cm		15-30 cm		30-60 cm	
		Sample	Percent	Sample	Percent	Sample	Percent
		(No)		(No)		(No)	
1	Low	0	0.00	1	5.88	1	5.88
2	Medium	10	58.82	13	76.47	13	76.47
3	High	5	29.41	2	11.76	3	16.67
4	Very High	2	11.76	1	5.88	1	5.88

Table 9b₂. Soil K status of Lumcha sampled sites, Gulmi, 2020 (N=17)

Table 9b₃. Soil K status of Pipaldhara sampled sites, Gulmi, 2020 (N=16)

SN	Κ	0-15 cm		15-30	15-30 cm		30-60 cm	
		Sample	Percent	Sample	Percent	Sample	Percent	
		(No)		(No)		(No)		
1	Very Low	1	6.25	0	0.00	1	6.25	
2	Low	2	12.50	5	31.25	5	31.25	
3	Medium	9	56.25	9	56.25	8	50.00	
4	High	4	25.00	1	6.25	1	6.25	
5	Very High	0	0.00	1	6.25	1	6.25	

Table 9c1. Soil K status of Gharpjong sampled sites, Marpha, 2020 (N=6)

SN	Κ	0-15 cm		15-30	15-30 cm) cm
		Sample (No)	Percent	Sample (No)	Percent	Sample (No)	Percent
1	Very Low	0	0.00	0	0.00	1	16.67
2	Low	2	33.33	3	50.00	4	66.66
3	Medium	4	66.67	2	33.33	1	16.67
4	High	0	0.00	1	16.67	0	0.00

Table 9c2. Soil K status of Marpha sampled sites, Marpha, 2020 (N=6)

SN	Κ	0-15 cm		15-30 cm		30-60 cm	
		Sample (No)	Percent	Sample (No)	Percent	Sample (No)	Percent
1	Very Low	0	0.00	0	0.00	1	16.67
2	Low	4	66.66	3	50.00	3	50.00
3	Medium	1	16.67	3	50.00	2	33.33
4	Very High	1	16.67	0	0.00	0	0.00

Table 9c₃. Soil K status of Pangling sampled sites, Marpha, 2020 (N=10)

SN	K	0-15 cm		15-30 cm		30-60 cm	
		Sample	Percent	Sample	Percent	Sample	Percent
		(No)		(No)		(No)	
1	Low	2	20.00	5	50.00	4	40.00
2	Medium	6	60.00	3	30.00	5	50.00
3	High	0	0.00	1	10.00	0	0.00

4 Ve	ry High	2	20.00	1	10.00	1	10.00
------	---------	---	-------	---	-------	---	-------

Т	able	10a.	Soil	K	values	of Ragau	ja, Sı	ınep	ani and	Santinagai	r samp	oled sites	, Dang	g, 2020	
	~	7						() T		ä			2		() T

SN	Statistical value Ragauja (N=23)		Sunepani (N=20)	Santinagar (N=25)
1	Minimum	227.58	14.94	233.05
2	Maximum	867.64	841.91	893.65
3	Standard 179.69		195.61	168.99
	deviation			
4	Average	481.23	425.50	596.93

Table 10b₁. Soil K values of Balkot sampled sites, Gulmi, 2020 (N=21)

SN	Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	45.20	33.21	21.22
2	Maximum	602.76	692.69	680.70
3	Standard			
	deviation	147.52	144.92	137.01
4	Average	204.79	145.12	127.71

Table 10b₂. Soil K values of Lumcha sampled sites, Gulmi, 2020 (N=17)

SN	Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	117.15	105.16	51.20
2	Maximum	632.73	572.78	392.93
3	Standard			
	deviation	151.88	123.48	88.84
4	Average	294.18	238.46	196.49

Table 10b₃. Soil K values of Pipaldhara sampled sites, Gulmi, 2020 (N=16)

SN	Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	21.22	57.19	15.23
2	Maximum	494.84	500.84	632.73
3	Standard			
	deviation	133.98	117.82	158.12
4	Average	219.81	188.71	180.85

Table 10c₁. Soil K values of Gharpjong sampled sites, Marpha, 2020 (N=6)

	tucie roen son it values of charpfong sampled sites, marpha, 2020 (11-0)					
SN	Statistical value	0-15 cm	15-30 cm	30-60 cm		
1	Minimum	98.60	69.10	39.00		
2	Maximum	216.90	499.20	211.50		
3	Standard					
	deviation	47.25	163.41	57.12		
4	Average	150.10	168.08	103.93		

Table 10c₂. Soil K values of Marpha sampled sites, Marpha, 2020 (N=6)

SI	N Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	55.10	60.50	29.60

2	Maximum	1114.00	232.50	176.10
3	Standard			
	deviation	420.11	62.10	54.56
4	Average	266.52	119.67	97.02

Table 10c₃. Soil K values of Pangling sampled sites, Marpha, 2020 (N=10)

SN	Statistical value	0-15 cm	15-30 cm	30-60 cm
1	Minimum	71.20	52.40	60.50
2	Maximum	649.70	663.10	518.50
3	Standard			
	deviation	209.75	198.61	135.30
4	Average	219.76	179.74	170.90

MANAGEMENT STRATEGY

1. Soil physical, chemical and biological indicators of farm soils have been observed in terms of its productive capacity by working on the yield difference between organic and conventional farms. The major quality indicators of soil is presented in Table 11. In this study, the main purpose of the soil sampling is for efficiency of nutrient inputs to maximize crop production and sustain soil fertility.

SN	Soil properties	Indicators
1	Biological property indicator	Microbial biomass Carbon
	(These all together enrich soil	Microbial biomass Nitrogen
	and support in all aspects of	Enzyme activities
	plant growth and production)	Soil macro-organisms (arthropods)
		Soil micro-organisms (pathogens)
		Earthworms
2	Chemical property indicator	Soil pH
	(These all together support in	Soil organic matter content
	availability of nutrient,	Available Nitrogen
	microorganisms activity and	Available Phosphorus
	plant growth)	Available Potassium
		Cation exchange capacity
		Micro nutrients (Ca, Mg, Al, Mn, Zn, Br, Na, Fe)
		Redox potential
3	Physical property indicator	Soil texture
	(These all indicators together	Soil structure
	support in aeration, mobility	Bulk density
	of water, root penetration and	Soil porosity
	soil fertility)	Soil color
		Soil moisture
		Soil temperature
		Soil water holding capacity

Table 11. Soil quality indicate	ors
---------------------------------	-----

Source: Anukwonke, 2014.

2. The N-P-K in balanced form plays important role in plant growth, crop yield and productivity. Their deficiency in plants are clearly identified by plant deficiency symptoms (Figure 1) and based on soil analyses are recommended in balanced form not to exceed their quantity otherwise may result toxicity to plant and change soil characteristics as well.

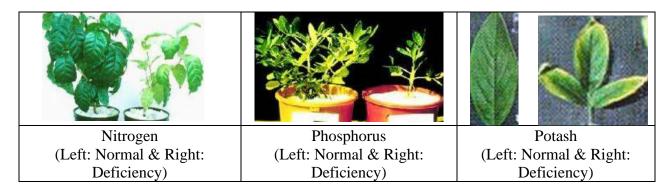


Figure 1. Main nutrients (N, P, K) for crop plants showing normal growth and deficiency symptoms

3. Every farmer has his own management practice, which influences nutrient availability and plant growth. There are also many trace elements, whose deficiency symptoms are expressed by plants, which differ from one field to another, and can be diagnosed in growing plants. The pH neutrality indicates availability of nutrients to plants. In the Figure 2, the gray area depicts a neutral pH of soil, when all nutrients are soluble and mostly available to plants. The pH scale ranges from 0 to 14 with pH 7 as the neural point. So maximum availability of nutrient to plants is the way to rather than just using fertilizers in the crop fields.

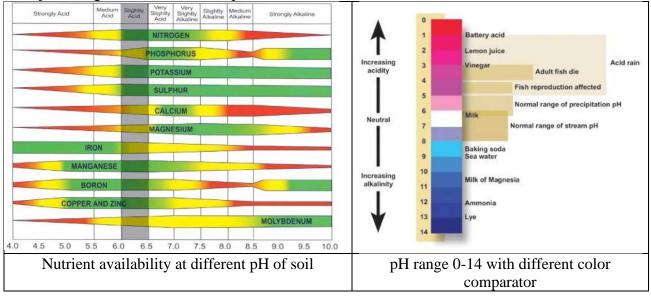


Figure 2. Effects of the soil pH on transfer of nutrients from soil to the plants through roots

4. Plant growing in fertile soil is reservoir of nutrients which are essential elements required for plant growth, production and productivity. Their available forms, mass (%) in dry plant tissue and key functions are summarized in Table 12.

	1		prod	uctivity
SN	Element	Form	Mass (%)	Major functions
		primarily	in dry	
		absorbed by	tissue	
		plants		
	Macronutrients			
1.	Carbon	CO ₂	45	Major component of plant's organic compounds
2.	Oxygen	CO ₂	45	Major component of plant's organic compounds
3.	Hydrogen	H ₂ O	6	Major component of plant's organic compounds
4.	Nitrogen	NO ₃ -,	1.5	Component of nucleic acids, proteins, hormones,
		$\mathrm{NH_4}^+$		chlorophyll, coenzyme
5.	Potassium	\mathbf{K}^+	1	Cofactor that functions in protein synthesis;
				major solute functioning in water balance;
				operation of stomata
6.	Calcium	Ca ²⁺	0.5	Important in formations and stability of cell walls
				and in maintenance of membrane structure and
				permeability, activates some enzyme; regulates
				many responses of cells to stimuli
7.	Magnesium	Mg ²⁺	0.2	Component of chlorophyll; cofactor and activator
				of many enzymes
8.	Phosphorus	$H_2PO_4^+$,	0.2	Component of nucleic acids, phospholipids, ATP,
		HPO4 ²⁻		several coenzymes
9.	Sulfur	SO 4 ²⁻	0.1	Component of proteins, coenzymes
	Micronutrients			
1.	Chlorine	Cl	0.01	Requiring for water splitting step of
	-	- 2 - 2		photosynthesis & water balance
2.	Iron	${\rm Fe}^{3+}, {\rm Fe}^{2+}$	0.01	Components of cytochromes; cofactor of some
-		2.5.7	0.007	enzymes, needed for photosynthesis
3.	Manganese	MN^{2+}	0.005	Active in formation of amino acids; activates
				some enzymes, required for water splitting step of
4	D		0.000	photosynthesis
4.	Boron	$H_2BO_3^-$	0.002	Cofactor in chlorophyll synthesis; may be
				involved in carbohydrate transport and nucleic
5	Zina	ZN ^{2 +}	0.002	acid synthesis; role in cell wall formation
5.	Zinc	ZIN ²	0.002	Active in formation of chlorophyll; cofactor of
6	Connon	$C_{1} + C_{2}^{2} +$	0.001	some enzymes; needed for DNA transcription
6.	Copper	Cu^+, Cu^{2+}	0.001	Compound of many redox and lignin-biosynthetic
7	Ni alala	Ni ²⁺	0.001	enzymes
7.	Nickle	IN1 ² '	0.001	Cofactor of enzyme functioning in nitrogen
				metabolism

Table 12. Fertile soil with reservoir of nutrients essential for plant growth, production and productivity

8.	Molybdenum	MoO ₄ ²⁻	0.0001	Essential	for	mutualistic	relation	nship	with
				nitrogen-fi	ixing	bacteria;	cofactor	in	nitrate
				reduction					

Source: Huang et al., 2008.

5. Use of FYM/Poultry manure Vermi-compost is always beneficial to plants and soils in many aspects. This has been exemplified with the use of Vermi-compost and comparing with chemical fertilizers (Table 13).

SN	Chemical and biological properties of soil	Vermi-compost	Chemical
			fertilizers
1.	Availability of nitrogen (kg/ha)	256.0	185.0
2.	Availability of phosphorus (kg/ha)	50.5	28.5
3.	Availability of potash (kg/ha)	489.5	426.5
4.	Azatobacter (1000/gm of soil)	11.7	0.8
5.	Phospho-bacteria (100,000/kg of soil)	8.8	3.2
6.	Carbonic biomass (mg/kg of soil)	273.0	217.0

Table 13. Farm soil properties under vermi-compost and chemical fertilizer

Source: Suhane, 2007.

6. Effect of climate in agriculture especially in crop production, and pest problems has been realized all over the world. The impacts of climate change on agriculture is listed in Table 14.

SN	Climate event	Possible impact on agriculture		
1.	Warmer and fewer cold days and nights	Increased yields in colder environments		
2.	Warmer and more frequent hot days	Decreased yields in warmer environments		
	and nights over most land areas	Increased insect pest outbreaks		
	(virtually certain)			
3.	Warm spells and heat waves increasing	Reduced yields in warmer regions due to		
	in	heat stress		
	frequency over most land areas (very	Increased crop damage due to wildfire		
	likely)			
4.	Heavy precipitation events increasing	Heavy precipitation events increasing in		
	in	frequency over most areas (very likely)		
	frequency over most areas (very likely)			
5.	Drought-affected area increases (likely)	Increase in land degradation and soil erosion		
		Lower yields from crop damage and failure		
		Increased risk of wild <i>fi</i> re, loss of arable land		
		Salinization by irrigation/irrigation water		
6.	Intense tropical cyclone activity	Damage to crops, storages, and agricultural		
	increases	infrastructure		
	(likely)			
7.	Extremely high sea levels increase in	Salinization of irrigation water, loss of arable		
	incidence	land, and increase in migration		
	(excludes tsunamis) (likely)			

Table 14. Climate change impacts on agriculture

Source: FAO, 2008.

7. Emphasis has been given on improving the use efficiency of fertilizers through the 4R nutrient stewardship principle, i.e. effective use, i) Right source, ii) Right rate, iii) Right time, iv) Right placement. However, important factors for controlling efficiency of fertilizer application are numerous: i). The nature of crop and its variety, ii). Method and time of application of fertilizer, iii). Crop management, iv). Cropping system, v). Chemical composition of soil and its pH, vi). Organic matter content of the soil, vii). Physical condition including drainage, aeration, etc., viii). Weather conditions, ix). Soil moisture, and x). Balance of nutrients. All these have to be taken care for efficient utilization of nutrients.

Recommendations

It has revealed that pH value range more acidic to (Dang) to towards basic (Marpha), soil organic contents variable, slighter better in Sunapani and C:N ratio in higher range, and major nutrients NPK are not in balanced forms as perceived from the study of three district sampled sites.

As general recommendation, one aspect, fertilizers are suggested depending upon the amount of nutrients available in the soil as well as requirement of the crop. For example, i) if available soil nutrients are very low in soil test, then increase the dose of fertilizer by 50%, ii) if available soil nutrients are low, increase the dose of fertilizer by 25%, iii) if available soil nutrients are medium or slightly more than medium, no need to change the fertilizer dose and amount of application, iv) if available soil nutrients are very high, reduce the dose of fertilizer by 50% and v) if available soil nutrients are high, reducing the dose of fertilizer by 25%, etc. However, based on the overall management strategies, the recommendations are made as follows:

- Proper crop selection, reduced tillage practices and crop residue utilization, discarding of tillage sequence that reduces loss of soil or water and disturbance to soil structure.
- Sub-soil improvement with terrace and contour bunds, agroforestry practices, levelling or horizontal strip constructed in crop field prevent accelerated erosion.
- Agronomic practices- cropping systems-mulching, alley cropping, contour cropping, timely planting, continuous cropping with well-managed crop residue, zero or minimum tillage and with legume-based and other crop rotations, legume plow down (green manure), cover crops, forage increase soil organic matters and soil microbial biomass.
- Fertility management- Soil test based recommendation, balanced use of fertilizers, organic matter application, cropping systems, green manuring,
- Water management- Minimizing water loss, sprinkler irrigation, drip irrigation, mulching to reduce soil moisture loss and maintain temperature,
- Pest management- Following eco-friendly and bio-rational practices including IPM, INM, ISPM etc. for crop specific important pests of commercial crop cultivation. INM system is the maintaining or adjusting plant nutrient supply to achieve a given level of crop production by optimizing the benefits from all possible sources of plant nutrients for sustainable crop production. Application of recommended dose of N-P-K @ 200-44-82 kg ha-1 plus either FYM at 5 Mg ha-1 or Vermi-compost at 3 Mg ha-1 was the best technology for harvesting higher yield of cauliflower with its quality produce and maintaining ecological health (Batabyal et al., 2016).
- Organic farming- It relies upon crop rotations, crop residues, animal manures, legumes, green manures, off-farm organic waste, mechanical cultivation, mineral bearing rocks and aspects of biological pest control to maintain soil productivity and tilth, to supply plant nutrients and to control insects, weeds and other pests.
- Among different climatic factors, rainfall and temperature are the most dominating ones influencing nutrient leaching from soil. Use of slow release fertilizer is an important approach to reduce nutrient leaching. Further, reclamation of alkali soil using recommended dose of gypsum and acidic soil using lime.

- Farmers' field experimentation is important to determine the type and amount of fertilizers to suit particular soil type and crop. Improved timing and/or splitting of fertilizer N increased N recovery efficiency from 0.17 kg kg-1 in FFP plots to 0.27 kg kg-1 in Site Specific Nutrient Management plots with 63% greater agronomic N use efficiency compared to Farmer Field Practice (Khurana et al., 2008).
- The effects of trace elements on *Brassica napus* studied shows that trace element- 2 and 4 mMK2SiO used in salinity, 300 mMNaCl increased leaf area, leaf fresh weight, seed yield, and photosynthesis; also increased APX and NR activities and chl content. Similarly, 15 and 30g L-1 as Na2SeO3 used in drought, limited irrigation at early stem elongation increased plant height, pod and seed development and yield (Hasanuzzaman et al., 2020).
- Nanotechnology is showing promise and may help improve the nutrient efficiency. Nanofertilizers release the nutrients in a controlled manner in response to reaction to different signals such as heat, moisture, etc. For example, Titanium dioxide (TiO2) increased the light absorption and chlorophyll content in the plant, while zinc oxide nanoparticles had a twin role of being an essential nutrient and a cofactor for nutrient-mobilizing enzymes. With these the tomato plants were better able to absorb light and minerals producing nearly 82% (by weight) more fruit than untreated plants, and the fruit had higher antioxidant (lycopene) content.

Hence, it is necessary to know the real field and crop situation by frequently visiting crop fields, sampling and monitoring plants, identifying deficiency symptoms, plant growth and vigor, crop yield and quality, and recommended best eco-friendly practices for higher crop productivity with long-term sustaining of soil productivity.

References

- Anukwonke, C.C. 2014. Soil survey and laboratory techniques: Quantitative and qualitative methods in soil classification. Retrieved from https://www.researchgate.net/publication/280298927
- Batabyal, K., B. Mandal, D. Sarkar, S. Murmu, A. Tamang, I. Das, G.C., Hazra and P.S. Chattopadhyay. 2016. Comprehensive assessment of nutrient management technologies for cauliflower production under subtropical conditions. *European Journal of Agronomy*, 79, 1–13.
- FAO, 2008. FAO. 2008. Challenges for sustainable land management (SLM) for food security in Africa. In *Proceedings of 25th Regional Conference for Africa*, Nairobi, Kenya, 16–20 June 2008. Rome, Italy: FAO.
- Hasanuzzaman, M., K. Nahar, A. Rahman, J.A.J Mahamud, M.S. Hussain, M.H. Alam, H. Oku and M. Fujita. 2020. Actions of biological trace elements in plant abiotic stress tolerance. In: Naeem, M., A.A. Ansari and S.S. Gill (eds.) Essential plant nutrients uptake, use efficiency and management. Springer International Publishing. pp. 213-274.
- Huang, P.M., Y. Li and M.E. Summer (eds.). 2008. Handbook of soil sciences resource management and environmental impacts. CRC Press, Boca Raton, Florida, USA.
- Khurana, H.S., S.B. Phillips, M. M. Bijay-Singh Alley, A. Dobermann, A.S. Sidhu, Y. Singh and S. Peng. 2008. Agronomic and economic evaluation of site-specific nutrient management for irrigated wheat in northwest India. *Nutrient Cycling in Agroecosystems*, 82, 15–31.
- Suhane, R.K. 2007. Vermi-compost. Publication of Rajendra Agriculture University, Pusa, Bihar, India, 88. info@kvksmp.org
